
and c h a r a c t e r i s t i c  t i m es ;  
su re ;  FM,  Magnus fo rce ;  
e t e r s .  

m and d, d imens ion less  longitudinal and t r a n s v e r s e  par t ic le  ve loc i t ies ;  P, p r e s -  
F r ,  Froude num ber ;  Udr,  pa r t i c l e  dr if t  ve loci ty ;  ~ and 8, d imens ion less  p a r a m -  
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A device which r e a l i z e s  the nonsteady ho t - f i l ament  method using an RC osc i l l a to r  is  d i scussed ,  
along with the r e s u l t s  of i t s  tes t ing  in the m e a s u r e m e n t  of the t h e r m a l  conductivity of the gases  
Ar, N2, and CO 2 and the i r  m i x t u r e s  under s tandard  condit ions.  

The expe r imen ta l  invest igat ion of heat  exchange in r a r e f i e d  gases  in the p r e sence  of solid su r faces  has  
acqui red  e v e r  g r e a t e r  impor tance  in r ecen t  y e a r s .  The complex  phys icochemica l  p r o c e s s e s  taking place  at 
the gas - solid boundary  have a cons iderab le  ef fec t  on p r o c e s s e s  of heat  t r a n s f e r  in gaseous media ,  requi r ing  
the introduction into heat -conduct ion theory  of the concepts  of a t e m p e r a t u r e  jump and of coeff icients  of energy  
accommodat ion  [1]. This imposes  h igher  demands  on the expe r imen ta l  technique a lso .  The ef for t  to sat isfy 
these  demands  led us to the c rea t ion  of a device based  on the nonsteady ho t - f i l ament  method using an RC osc i l -  
l a tor  as the r e c o r d e r  of the f i lament  t e m p e r a t u r e .  

A whole s e r i e s  of methods  ex is t  which p e r m i t  one to inves t iga te  the the rmophys ica l  p r o p e r t i e s  of a 
gaseous  med ium with a high degree  of accu racy .  The s t eady- s t a t e  r e s e a r c h  methods  have obtained the g rea t e s t  
development .  Devices  b a s e d  on these  methods p o s s e s s  a high m e a s u r e m e n t  accu racy ,  but they have a number  
of fundamental  d rawbacks  reducing the value and re l iabi l i ty  of the r e su l t s  obtained. F i r s t  of all one mus t  note 
the p r e s e n c e  of a constant  t e m p e r a t u r e  drop in the inves t iga ted  g a s e s ,  which leads to such undesi rable  phenom-  
ena as convection and thermodif fus ion .  The large  value of this  drop,  reaching  tens of deg rees ,  h inders  the 
one- to -one  co r re l a t ion  between the r e su l t s  obtained and the t e m p e r a t u r e  of the inves t igated gas .  The t ime con- 
sumed  in p e r f o r m i n g  the m e a s u r e m e n t s  is long. 

Devices  ba sed  on nonsteady methods  have not obtained wide application because  of the i r  low accu racy ,  
which is  due mainly  to the difficulty in the record ing  of a rapidly  vary ing  t e m p e r a t u r e .  All the s a m e ,  non- 
s teady devices  allow one to avoid the indicated defects  of s t eady- s t a t e  dev ices ,  and they considerably  s implify 
and speed up the m e a s u r e m e n t  p r o c e s s .  

To i nc r ea se  the accu racy  of nonsteady devices  we used a h igh-f requency RC osc i l l a to r  as the t e m p e r a t u r e  
r e c o r d e r .  A c i rcu i t  d i ag ram of the device is shown in Fig.  1. The e lec t ron ic  c i rcu i t  buil t  on the t r a n s i s t o r s  
T 1 and T 2 toge ther  with the de tec tor  D f o r m  an RC osc i l l a to r  whose negative feedback c i rcui t  is f r e q u e n c y - s e t -  
t ing and is built  in the fo rm of a 2T br idge .  

S. M. Kirov Ura l  Polytechnic Inst i tute ,  Sverdlovsk.  T rans la t ed  f rom Inzhenerno-Fiz ichesk i i  Zhurnal ,  
Vol. 37, No. 2, pp. 269-272, August,  1979. Original  a r t ic le  submit ted  October  2, 1978. 
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Fig.  1. Circuit  d iagram of a 
device real izing the nonsteady 
hot-f i lament  method using an 
RC osci l la tor .  R~ k~2; c, pF.  

The detector  D is a s t ructure  consist ing of a metal  fi lament s t re tched along the axis of a copper cyl inder  
in whose internal cavity the investigated gas is located.  (The construct ion is descr ibed in detail in [2].) As 
shown in Fig.  1, the fi lament of the detector  D is included as one of the elements  of a f requency-set t ing circui t  
and affects the frequency of the RC osci l la tor  through its active e lec t r ica l  res i s tance .  A change in the r e s i s -  
tance of the fi lament leads to a change in the osci l la tor  frequency.  The filament of the detector  D is com-lected 
through the contact  C with the fi lament bat tery  Bf. 

The e lec t r ica l  res i s tance  of the metal  f i lament was 20-30 ~ for the given circui t .  

In the e lect ronic  c i rcui t  we used GT-308 V t r ans i s t o r s .  The RC osci l la tor  is supplied f rom two bat ter ies  
of the Baken type with a total voltage of 2.8 V. The working osci l la tor  frequency of 1.2.106 Hz is recorded  by 
a ChZ-24 e lec t ron ic -coun te r  f requency me te r .  The voltage of Bf is 1.5-3 V. 

The device works in the following way: the investigated gas or  gas mixture is placed in the cavity of the 
detec tor  D. The contact C is closed and a heating cur ren t  pulse f rom the bat tery  Bf is applied to the detector  
fi lament.  Then the contact C is opened and the detector  fi lament,  having obtained some store of heat,  s tar ts  
to cool, dissipating the heat into the gas.  In the p rocess  the filament tempera ture  dec reases ,  which leads to 
an increase  in the frequency of the RC osci l la tor  owing to the decrease  in the res is tance  of the cooling filament. 
The osc i l la tor  frequency is recorded  by the frequency mete r  over  different time intervals  f rom the moment of 
opening the contact C until the complete cooling of the filament.  The rate of cooling of the detector  filament 
is determined f rom the readings of the frequency mete r .  

Following [2, 3], we can connect the fi lament cooling rate with the coefficients of energy accommodation 
and thermal  conductivity of the investigated gas. The coefficient of thermal  conductivity ?~ and the coefficient 
of energy accommodation a E are connected with the fi lament cooling rate m by the equations 

~ =  1 ( o~n2 8?~T3 ) ~ R2 . 
-2-- pcv m pcp l~ pcpR, RTIn ) ~ ,  (1) 

cppRirn (2n~/ N o k T) 1 / z 
~ze = 2P (c~t/No + k/2) (2) 

The connection between the cooling rate and the measured  frequencies of the RC osci l la tor  is expressed  by the 
equation 

1 F - -  F0 
trt= - -  Ill 

t F f : -  Fo (3) 

The de~Ace for  investigating heat exchange using an RC osci l la tor  was initially tested in a study of the 
tempera ture  dependence of the coefficients of energy accommodation of a number of inert  gases at the surface 
of a platinum filament.  We published data on these investigations in [3]. 

In the present  work we measured  the thermal  conductivities of the gases Ar,  N2, and C02 and their  mix-  
tures  at a tempera ture  of 15~ and a tmospher ic  p r e s s u r e .  The resul ts  are given in Table 1. 

In tes ts  of the device its following positive charac te r i s t i c s  were revealed:  

1) the digital data output (the frequency me te r  is a digital pr inter) ;  
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TABLE 1. Measured Values of Thermal Con- 
ductivity of the Gases At,  N2, and CO 2 and Their 
Mixtures Taken in a Ratio of 50:50 at A t m o -  
spheric Pressure  and a Temperature of 15~ 

Gas 

Ar 
N~ 

CO, 
Ar--N s 
Ar--CO2 
N.o--CO2 

~%.10 4, 
W/m" dcg 

159 
238 
153 
230 
164 
165 

1,1 
1.3 
0,9 
1,0 
0.8 
0,8 

A. "i04, W/ 
m..d, eg t4] 

160 
240 
152 

2) the high stability (no worse than 10 -6) and high temperature sensitivity (103 Hz/deg) of the RC oscil- 
lator permit  the creation of an initial temperature  drop of less than I~ in the device, which assures a high 
certainty in the mean temperature of the measurements ,  eliminates convection, and permits  work with gas 
mixtures ,  since thermodiffusion is practically absent; 

3) the high speed of the measurement system makes it possible to conduct measurements even when the 
temperature and pressure  of the investigated gases vary continuously; 

4) the use of an electronic-counter  frequency meter  to measure the frequency assures the recording of 
the time coordinate of the process  with an accuracy determined by the quartz oscil lator (+10-7). 

NOTATION 

~E, coefficient of energy accommodation, a dimensionless quantity; ;~, thermal conductivity of investi- 
gated gas, W/m .deg; m, filament cooling rate,  1/sec;  p, density of filament mater ial ,  kg/m3; Cp, heat 
capacity, J /kg .deg ;  w, thermal conductivity, W/m.deg ;  T, emissivity,  dimensionless; l, length of fila- 
ment, m; R,, its radius,  m; R2, inner radius of cylinder, m; g, molecular weight of gas, kg/mole; Cv, heat 
capacity of investigated gas at constant volume, J /kg .deg ;  P, gas p ressure ,  N/m2; T, mean filament tem- 
perature ,  OK; k, Boltzmarm constant, J /deg; N 0, Avogadro's number, 1/mole; r  Stefan-Boltzmann con- 
stant, J .deg-3/m 2. sec; Fi ,  initial frequency of RC oscil lator measured at time of opening of contact C, Hz; 
F 0, oscil lator frequency upon complete cooling of filament, Hz; F,  oscil lator frequency measured in the pro- 
cess of cooling of filament, Hz; t, time when frequency F is measured,  reckoned from time of measurement 
of frequency F i, sec. 
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